Экзамен по математике

1.ОЦЕНКУ «отлично» ЗА ЭКЗАМЕН ПОЛУЧАЮТ

- 1. Васильева И.
- 2.Гмызина.М.
- 3. Лобжа А.
- 4. Мамаева В.
- 5.Пленкина И.
- 6. Чурина О.

2.ОЦЕНКУ «хорошо» ЗА ЭКЗАМЕН ПОЛУЧАЮТ

- 1.Дорофеева Е.
- 2. Хапикова А.
- 3.Лютина М.
- 4. Матвеева К.

Экзамен начинается в 9.00 и заканчивается в 10.20. Работу необходимо выполнять в соответствии с образцами, которые были предложены при выполнении дистанционных работ. В работе написать фамилию и имя, вариант. Экзаменационную работу нужно будет сфотографировать и отправить на электронный адрес nata23sl@eandex.ru Слудниковой Н.В.

Ф.И студента	Вариант
Александрова А.	1
Богданова Э.	2
Жданова К.	3
Ишкова М.	4
Каширских В.	5
Кислицына М.	6
Козенко А.	7
Кокорина М.	8
Коржавина Т.	9
Кочурова А	10
Миссирова А	11
Популова А.	12
Пухтвент Р.	13
Смирнов А	14
Сырчина П	15
Тутынина Д.	16
Яровикова В.	17
Лунгу М.	18

Вариант 1

- **1.** Упростите выражение $\vec{CK} + \vec{MO} + \vec{BC} + \vec{KM} + \vec{OT}$
- **2.**Найдите площадь боковой поверхности конуса, если образующая равна 5,8 см, а его радиус основания 3,5 см.
- **3.** Девочки приготовили поздравительные открытки для мальчиков. 7 открыток с танками, три открытки с самолетами и 5 с кораблями. Найдите вероятность того, что Никите достанется открытка с танком или самолетом.
- **4.** Решите уравнение ctg x = -1
- **5.** Тело движется по прямой так, что расстояние S от начальной точки изменяется по закону $S=3t+t^2$ (м), где t-время движения в секундах. Найдите скорость тела через 3 с после начала движения.

Экзаменационная работа

Вариант 2

- **1**. Изобразите плоскость π .
- а) проведите прямую g, ледащую в плоскости;
- б) отметьте точки ${\bf B}$ и ${\bf M}$, лежащие в плоскости, причем ${\bf B}$ принадлежит прямой ${\bf g}$,
- в) проведите прямую n, пересекающую плоскость и проходящую через точку \mathbf{M} .
- **2.** Вычислите C_5^3
- **3.** Вычислите $\log_0 4 + \log_0 25$
- **4.** Найдите область определения функции $f(x) = \sqrt{5-2x}$
- **5.** Найдите первообразную функции $f(x) = 5 3x^2$.

Экзаменационная работа

Вариант 3

- **1**. Найдите ширину прямоугольного параллелепипеда, если его диагональ, длина и высота равны соответственно 49 мм, 12 мм, 26 мм.
- 2. Диаметр сферы 18 км. Найдите площадь поверхности сферы.
- **3.** Вычислите: $\overline{A}_7^2 + P_6$
- **4.** Решите уравнение $\cos x = -\frac{1}{2}$
- **5.**Тело движется по прямой так, что расстояние S от начальной точки изменяется по закону $S=1+4t-t^2$ (м), где t-время движения s секундах. Через какое время после начала движения тело остановится?

Вариант 4

1. Найдите длину вектора \vec{BA} если A (4; 2; 4) и В (2; –4; 4).

2. Мальчики приготовили поздравительные открытки девочкам: 2 открытки с лилиями, 9 – с розами и 6 – с хризантемами. Найдите вероятность того, что Лена получит открытку с розой или с хризантемой.

3. Решите уравнение $2x^3 - 1 = 15$

4. Найдите значение функции в указанной точке

$$f(x) = \frac{x^2 - 3}{x + 5} - 10, \quad x = -4$$

5. Найдите промежутки возрастания и убывания функции

$$f(x) = x^3 - 12x$$
.

Экзаменационная работа

Вариант 5

1. Постройте плоскость β . Из точки R, не лежащей на плоскости проведите перпендикуляр RH и наклонную RL. Для полученного треугольника RHL запишите теорему Пифагора. Найдите RL, если RH = 30 см и LH = 72 см

2. Вычислите \overline{A}_6^4

3. Команды разных колледжей подвели итоги побед в соревнованиях за четыре года обучения. Первая команда одержала 2 победы, вторая – 7 побед, третья, четвертая и пятая – 4, 6, 1 победы соответственно. Составьте таблицу, постройте столбчатую диаграмму побед команд этих колледжей.

4. Вычислите:

- a) arctg (-1)

5. Вычислите интеграл $\int_{0}^{0} x^{3} dx$

Экзаменационная работа

Вариант 6

1. Дан вектор \vec{a} {0;3;–2}. Найдите координаты вектора $3\vec{a}$

2. Найдите площадь боковой поверхности цилиндра высотой 14 м, если радиус основания равен 3,5 м.

3. Решите уравнение: $5^{x-4} = 125$

4. По графику функции определите:

- 1) область определения
- 2) область значений
- 3) нули функции
- 4) промежутки возрастания (убывания)
- 5) промежутки знакопостоянства
- 6) экстремумы
- 7) наибольшее и наименьшее значения фун

5. Найдите критические точки функции

 $f(x) = 2x^3 + 3x^2.$

Вариант 7

1. Постройте плоскость β. Из точки R, не лежащей на плоскости проведите перпендикуляр RH и наклонную RL. Для полученного треугольника RHL запишите теорему Пифагора. Найдите длину перпендикуляра, если наклонная равна 68 см, проекция наклонной имеет длину 60 см.

2. Составьте треугольник Паскаля до n = 8.

Найдите коэффициент $X = a^6 e^2$ при заданном одночлене $(a + e)^8$

3. Вычислите: a)
$$\arccos\left(-\frac{\sqrt{3}}{2}\right)$$
 б) $\arccos 0 + \operatorname{arctg} 0$

4. Найдите область определения функции $f(x) = \sqrt{2x-5}$

5. Найдите наибольшее и наименьшее значения функции $f(x) = x^3 - 12x$. на промежутке [-3; 0].

Экзаменационная работа

Вариант 8

1. Даны векторы \vec{a} {0;3;–2} , \vec{e} {10;5;1}. Найдите координаты вектора \vec{e} – \vec{a}

2.Найдите площадь боковой поверхности конуса, если образующая равна 6,5 см, а его радиус основания 2,2 см.

3. Ваня, Игорь, Саша, Толик и Егор - лыжники. В прошлом сезоне Ваня приходил на финиш первым 4 раза, Игорь – 6 раз, Саша, Толик и Егор – 5, 3 и 1 раз соответственно. Составьте таблицу побед лыжников, постройте столбчатую диаграмму.

4. Вычислите $\log_8 4 + \log_8 16$

5. Вычислите интеграл $\int_{0}^{\frac{\pi}{3}} \frac{1}{\cos^2 x} dx$

Экзаменационная работа

Вариант 9

1. Изобразите плоскость у.

а) проведите прямую s, ледащую в плоскости;

б) отметьте точки X и О, лежащие в плоскости, причем X принадлежит прямой s,

в) проведите прямую 1, пересекающую плоскость и проходящую через точку О.

2. Вычислите: $A_8^3 - C_7^4$

3. Решите уравнение: $\log_2(x-7) = 5$

4. Определите четность функции $f(x) = \frac{2x^3 - 4x}{7}$

5. Вычислите интеграл $\int_{2}^{3} x \ dx$

Вариант 10

- 1. Упростите выражение $\vec{KA} + \vec{TC} + \vec{BK} + \vec{PT} + \vec{AP}$
- 2. Диаметр сферы 24 км. Найдите площадь поверхности сферы.
- **3.** Мальчики приготовили поздравительные открытки девочкам: 2 открытки с лилиями, 9 с розами и 6 с хризантемами. Найдите вероятность того, что Маша и Валя получат открытки с лилиями.
- **4.** Решите неравенство $\sin x \ge -\frac{1}{2}$
- 5. Найдите промежутки возрастания и убывания функции

$$f(x) = 2x^3 + 3x^2.$$

Экзаменационная работа

Вариант 11

- 1. Постройте плоскость α . Из точки B, не лежащей на плоскости проведите перпендикуляр BK и наклонную BC. Для полученного треугольника BCK запишите теорему Пифагора. Найдите BC, если BK = 48 см и CK = 36 см
- **2.** Составьте треугольник Паскаля до n = 6.

Найдите коэффициент $X = a^4 e^2$ при заданном одночлене $(a + e)^6$

- **3.** Пятачок и Винни-Пух пошли покупать воздушные шарики. В магазине имеются 6 синих шариков, 5 красных шариков и 4 зеленых. Найдите вероятность того, что друзья купят два красных шарика.
- **4.** Вычислите: a) arcctg $(-\sqrt{3})$ б) arccos 1 +arcctg 1
- 5. Найдите наибольшее и наименьшее значения функции

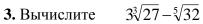
$$f(x) = 2x^3 + 3x^2$$
. на промежутке [0; 2].

Экзаменационная работа

Вариант 12

- 1. Даны векторы \vec{a} $\{0;3;-2\}$, \vec{c} $\{-1;8;2\}$. Найдите координаты векторов \vec{a} + \vec{c}
- 2. Найдите площадь боковой поверхности цилиндра высотой 11 м, если радиус основания равен 2,5 м.
- **3.** Решите уравнение $6 + x^4 = 5$
- 4. Найдите значение функции в указанной точке

$$f(x) = \frac{x+3}{x^2-8} - 4$$
, $x = 3$


5. Вычислите интеграл $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x dx$

Вариант 13

1. Даны векторы \vec{a} {0;3;-2}, \vec{d} {3;-2;0}. Найдите координаты вектора $\vec{a} - \vec{d}$

 $\int (3x^2 + 4)dx$

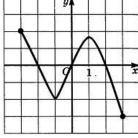
2. Найдите площадь боковой поверхности конуса, если образующая равна 7,2 см, а его радиус основания 4,5 см.

4. По графику функции определите:

1) область определения

2) область значений

3) нули функции


4) промежутки возрастания (убывания)

5) промежутки знакопостоянства

6) экстремумы

7) наибольшее и наименьшее значения функции

Экзаменационная работа

Вариант 14

1. Найдите длину диагонали прямоугольного параллелепипеда, если длина, ширина и высота равны соответственно 8 м, 19 м, 40 м.

2. Вычислите P_5

3. Пятачок и Винни-Пух пошли покупать воздушные шарики. В магазине имеются 6 синих шариков, 5 красных шариков и 4 зеленых. Найдите вероятность того, что Пятачок выберет синий или зеленый шарик.

4. Решите уравнение $\sin x = -\frac{1}{2}$

5. Тело движется по прямой так, что расстояние S от начальной точки изменяется по закону $S=0,5t+3t^2+4$ (м), где t-время движения в секундах. Найдите скорость тела через 2 с после начала движения.

Экзаменационная работа

Вариант 15

1. Найдите высоту прямоугольного параллелепипеда, если его диагональ, длина и ширина равны соответственно 49 мм, 12 мм, 31 мм.

2. Вычислите $A_{13}^2 + \overline{A}_{13}^2$

3. Решите неравенство $\cos x \le \frac{\sqrt{2}}{2}$

4. Найдите область определения функции $f(x) = \sqrt{2 + 5x}$

5. Вычислите интеграл $\int_{\frac{5\pi}{6}}^{\frac{\pi}{2}} \frac{1}{\sin^2 x} dx$

Вариант 16

1. Найдите длину вектора \vec{BA} если A (3; 3; 3) и B (–2; 1; 0).

2. Диаметр сферы 100 км. Найдите площадь поверхности сферы.

3. Пять третьих классов посещали в течении учебного года выставки, музеи и театры. За посетил 5 культурных мероприятий, Зб посетил 3 культурных мероприятия, Зв, Зг, Зд посетили соответственно 4, 6, 3 культурных мероприятия. Составьте таблицу, постройте столбчатую диаграмму посещений мероприятий учениками третьих классов.

4. Вычислите $\log_6 432 - \log_6 2$

5. Найдите промежутки возрастания и убывания функции

$$f(x) = 27x - x^3.$$

Экзаменационная работа

Вариант 17

1. Найдите длину диагонали прямоугольного параллелепипеда, если длина, ширина и высота равны соответственно 4 м, 28 м, 35 м.

2. Диаметр сферы 36 м. Найдите площадь поверхности сферы

3. Пять третьих классов посещали в течении учебного года выставки, музеи и театры. За посетил 5 культурных мероприятий, 3б посетил 3 культурных мероприятия, 3в, 3г, 3д посетили соответственно 4, 6, 3 культурных мероприятия. Составьте таблицу и постройте полигон посещений мероприятий учениками третьих классов.

4. Решите уравнение $ctgx = -\sqrt{3}$

5. Найдите критические точки функции

$$f(x) = 75x - x^3$$

Экзаменационная работа

Вариант 18

1. Упростите выражение $P\vec{M} + A\vec{T} + K\vec{C} + T\vec{K} + C\vec{P}$

2. Составьте треугольник Паскаля до n = 7.

Найдите коэффициент $X = a^5 e^2$ при заданном одночлене $(a + e)^7$

3. Вычислите $\sqrt[3]{27} + \sqrt[4]{625}$

4. Определите четность функции $f(x) = \frac{3x^2 - 2x^5}{4}$

5. Вычислите интеграл $\int_{1}^{3} (5-2x) dx$